Parameter settings for post-processing models ===================================================================================================================================== (Default values are in ~/search/Post-processing.yaml) The benchmark provides several arguments for describing: - Basic setting of the parameters See below for the details: Post-processing required parameters '''''''''''''''''' - ``model (str)`` : The name of the pre-processing model, which automatically loads the configs from search/properties/models/.yaml. - ``model_save_dir (str)`` : The save path of model. - ``tmp_dir (str)`` : The temperature path of files. - ``mode (str)`` : Train or test mode. - ``best_model_list (list)`` : The best model path list for test mode. Supervised and unsupervised model train parameters '''''''''''''''''' - ``device (str)`` : used device (cpu or gpu) to run the codes. - ``epoch (int)`` : training epochs. - ``batch_size (int)`` : training batch size. - ``learning_rate (float)`` : learning rate of optimizing the models. - ``dropout (float)`` : The dropout for training. - ``loss (str)`` : The loss type for training. - ``lambda (float)`` : The hyperparameter lambda in PM2 and xQuAD for balance relevance and diversity. LLMs-based model parameters '''''''''''''''''' - ``prompts_dir (str)`` : The path of LLMs-based model's prompts, default as prompts\llm_rerank.txt. - ``model_name (str)`` : The name of LLMs-based backbone model, default as gpt-4o. - ``api_url (str)`` : The api url of LLM API. - ``api_key (str)`` : The api key of LLM API. - ``max_new_tokens (int)`` : The max new tokens for LLMs-based model, default as 1024. - ``temperature (float)`` : The temperature for LLM generation. - ``top_p (float)`` : The top_p for LLM generation. Evaluation parameters '''''''''''''''''' - ``eval_step (int)`` : How many epochs apart should the model be evaluated on the validation set. - ``eval_batch_size (int)`` : The batch size used to conduct evaluation. Log set ups '''''''''''''''''' - ``log_name (str)`` : The running log name, which will create a new dictionary ~search\log\log_name\ and store the test results and all parameters into it.