Parameter settings for pre-processing models ===================================================================================================================================== (Default values are in ~/search/Pre-processing.yaml) The benchmark provides several arguments for describing: - Basic setting of the parameters See below for the details: Pre-processing required parameters '''''''''''''''''' - ``preprocessing_model (str)`` : The name of the pre-processing model, which automatically loads the configs from search/properties/models/.yaml. Ranklib parameters '''''''''''''''''' - ``name (str``) : The name of the ranker class. - ``ranker_path (str)`` : The path to the Ranklib library. - ``rel_max (int)`` : The maximum relevance to be assigned to items. - ``ranker (str)`` : The name of the ranking model. - ``ranker_id (int)`` : The ID of the ranking model as per the Ranklib library. - ``metric (str)`` : The evaluation metric. - ``top_k (int)`` : The evaluation at top-k. - ``lr (float)`` : The learning rate for training. - ``epochs (int)`` : The number of epochs for training. - ``train_data (list)`` : The data types for training ["original", "fair"]. - ``test_data (list)`` : The data types for testing ["original", "fair"]. Evaluation parameters '''''''''''''''''' - ``metrics (list)`` : The list of fairness evaluation metrics having the following values ["diversity", "select_rate", "exposure", "individual", "igf"]. - ``rankings (list)`` : The list of rankings to perform the evaluation on, having the following values: "score_col" - original data, "__" - trained and tested on original data, "_fair" - transformed data, "fair__fair" - trained and tested on transformed data. - ``k_list (list)`` : The top-k values for evaluation.